organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1-(4-Chloro-2-fluoro-5-nitrophenyl)-4difluoromethyl-3-methyl-1H-1,2,4triazol-5(4H)-one

Li Yang* and Jun Liu

Henan Medical College for Staff and Workers, Zhengzhou 451191, People's Republic of China Correspondence e-mail: yang_l2012@163.com

Received 19 March 2012; accepted 25 March 2012

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.005 Å; R factor = 0.068; wR factor = 0.185; data-to-parameter ratio = 12.1.

In the title compound, $C_{10}H_6ClF_3N_4O_3$, the dihedral angle between the benzene ring and the triazolone ring is 59.9 $(1)^{\circ}$, while the nitro substituent subtends an angle of 39.5 $(1)^{\circ}$ to the benzene ring plane. In the crystal, pairs of molecules form inversion dimers via C-H···O hydrogen bonds.

Related literature

For background to applications of this class of compound, see: Ager & Polsz (1996). For the synthesis and the use of the title compound in the production of herbicides, see: Goudar (1998). For bond-length data, see: Allen et al. (1987).

Experimental

a = 12.556 (3)
b = 14.800(3)
c = 6.8760 (14

 $\beta = 103.32 \ (3)^{\circ}$ V = 1243.4 (4) Å³ Z = 4Mo $K\alpha$ radiation

Data collection

Enraf–Nonius CAD-4
diffractometer
Absorption correction: ψ scan
(North et al., 1968)
$T_{\min} = 0.899, T_{\max} = 0.965$
4877 measured reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.068$	190 parameters
$wR(F^2) = 0.185$	H-atom parameters c
S = 1.01	$\Delta \rho_{\rm max} = 0.78 \text{ e} \text{ Å}^{-3}$
2293 reflections	$\Delta \rho_{min} = -0.34 \text{ e} \text{ Å}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
C10-H10A···O1 ⁱ	0.98	2.32	3.190 (6)	148
Symmetry code: (i) $-x$	+2, -v + 1, -	Ζ.		

 $\mu = 0.36 \text{ mm}^{-1}$

 $0.30 \times 0.20 \times 0.10 \text{ mm}$

2293 independent reflections

1589 reflections with $I > 2\sigma(I)$

3 standard reflections every 200

onstrained

intensity decay: 1%

T = 293 K

 $R_{\rm int} = 0.073$

reflections

Data collection: CAD-4 Software (Enraf-Nonius, 1985); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors thank the Center for Testing and Analysis, Nanjing University, for the data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5217).

References

- Ager, J. W. & Polsz, C. A. (1996). EP Patent No. 1273232.
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Enraf-Nonius (1985). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.
- Goudar, J. S. (1998). US Patent No. 5756755.
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2012). E68, o1374 [doi:10.1107/S1600536812013013]

1-(4-Chloro-2-fluoro-5-nitrophenyl)-4-difluoromethyl-3-methyl-1*H*-1,2,4-triazol-5(4*H*)-one

Li Yang and Jun Liu

Comment

The title compound is an important intermediate used to synthesize the herbicide Carfentrazone-ethyl. It can also be used to synthesize other herbicides (Goudar, 1998), which are of wide interest for application to the control of broadleaf weeds and sedges (Ager & Polsz, 1996). We report here the crystal structure of the title compound, (I), which is of interest to us in this field.

The molecular structure of (I) is shown in Fig. 1. Bond distances in the molecule are normal (Allen *et al.*, 1987). The dihedral angle between the C1—C6 and N1/N3/C8/N2/C7 rings is 59.9 (1)° and the nitro substituent subtends an angle of $39.5 (1)^\circ$ to the benzene ring plane. In the crystal structure, molecules form inversion dimers via intermolecular C10—H10A…O1 hydrogen bonds (Table 1, Fig 2).

Experimental

The title compound, (I) was prepared by a method reported in literature (Goudar, 1998). Crystals were obtained by dissolving (I) (0.2 g) in acetone (50 ml) and evaporating the solvent slowly at room temperature over 10 d.

Refinement

All H atoms were positioned geometrically and constrained to ride on their parent atoms, with C—H = 0.93 Å for aromatic H and 0.96 Å for alkyl H, respectively. The $U_{iso}(H) = xU_{eq}(C)$, where x = 1.2 for aromatic H, and x = 1.5 for alkyl H.

Computing details

Data collection: *CAD-4 Software* (Enraf–Nonius, 1985); cell refinement: *CAD-4 Software* (Enraf–Nonius, 1985); data reduction: *XCAD4* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXS97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

Figure 1

The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

A packing diagram for (I) with hydrogen bonds drawn as dashed lines.

1-(4-Chloro-2-fluoro-5-nitrophenyl)-4-difluoromethyl-3-methyl-1H- 1,2,4-triazol-5(4H)-one

Crystal data	
$C_{10}H_{6}ClF_{3}N_{4}O_{3}$ $M_{r} = 322.64$ Monoclinic, $P2_{1}/c$ Hall symbol: -P 2ybc $a = 12.556 (3) \text{ Å}$ $b = 14.800 (3) \text{ Å}$ $c = 6.8760 (14) \text{ Å}$ $\beta = 103.32 (3)^{\circ}$ $V = 1243.4 (4) \text{ Å}^{3}$ $Z = 4$	F(000) = 648 $D_x = 1.724 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 25 reflections $\theta = 9-13^\circ$ $\mu = 0.36 \text{ mm}^{-1}$ T = 293 K Block, colourless $0.30 \times 0.20 \times 0.10 \text{ mm}$
Data collection	
Enraf–Nonius CAD-4 diffractometer Radiation source: fine-focus sealed tube Graphite monochromator	$\omega/2\theta$ scans Absorption correction: ψ scan (North <i>et al.</i> , 1968) $T_{\min} = 0.899, T_{\max} = 0.965$

4877 measured reflections 2293 independent reflections 1589 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.073$ $\theta_{\text{max}} = 25.4^{\circ}, \ \theta_{\text{min}} = 1.7^{\circ}$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.068$	Hydrogen site location: inferred from
$wR(F^2) = 0.185$	neighbouring sites
S = 1.01	H-atom parameters constrained
2293 reflections	$w = 1/[\sigma^2(F_o^2) + (0.1P)^2 + 0.330P]$
190 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.78 \text{ e} \text{ Å}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.34 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

 $h = -15 \rightarrow 14$ $k = -17 \rightarrow 17$

intensity decay: 1%

3 standard reflections every 200 reflections

 $l = 0 \rightarrow 8$

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Cl	0.47555 (10)	0.11625 (7)	0.08507 (17)	0.0670 (4)
F1	0.84029 (19)	0.26681 (16)	0.2492 (4)	0.0710 (7)
C1	0.5785 (3)	0.3747 (2)	0.1483 (5)	0.0470 (9)
H1A	0.5481	0.4322	0.1386	0.056*
N1	0.7581 (2)	0.43972 (19)	0.2491 (4)	0.0444 (7)
01	0.8646 (3)	0.4432 (2)	0.0175 (5)	0.0709 (9)
O2	0.3580 (3)	0.3887 (3)	0.0249 (5)	0.0798 (10)
C2	0.5118 (3)	0.2996 (3)	0.1173 (7)	0.0580 (10)
F2	0.9214 (3)	0.6832 (2)	0.1945 (7)	0.1216 (14)
N2	0.7474 (2)	0.4912 (2)	0.4138 (5)	0.0481 (8)
N3	0.8789 (2)	0.5451 (2)	0.2821 (5)	0.0469 (8)
C3	0.5549 (3)	0.2129 (2)	0.1239 (6)	0.0521 (9)
F3	1.0420 (2)	0.6114 (2)	0.4004 (5)	0.0862 (9)
C4	0.6663 (3)	0.2027 (2)	0.1651 (5)	0.0414 (8)
H4A	0.6970	0.1454	0.1694	0.050*
N4	0.3939 (4)	0.3183 (3)	0.0870 (10)	0.113 (2)
C5	0.7323 (3)	0.2774 (2)	0.2001 (5)	0.0408 (8)
C6	0.6898 (3)	0.3641 (2)	0.1934 (5)	0.0379 (8)
C7	0.8207 (3)	0.5538 (2)	0.4266 (6)	0.0476 (9)
C8	0.8380 (3)	0.4709 (2)	0.1627 (5)	0.0471 (9)
C9	0.8423 (4)	0.6223 (3)	0.5868 (8)	0.0770 (14)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H9A	0.7916	0.6145	0.6708	0.116*
H9B	0.8337	0.6816	0.5287	0.116*
H9C	0.9157	0.6153	0.6653	0.116*
C10	0.9601 (3)	0.6014 (3)	0.2389 (7)	0.0626 (12)
H10A	0.9878	0.5764	0.1281	0.075*
O3	0.3405 (3)	0.2597 (4)	0.1869 (10)	0.143 (2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl	0.0777 (8)	0.0436 (6)	0.0810 (8)	-0.0207 (5)	0.0213 (6)	-0.0081 (5)
F1	0.0482 (13)	0.0551 (15)	0.109 (2)	0.0087 (11)	0.0167 (13)	-0.0066 (14)
C1	0.054 (2)	0.0352 (19)	0.053 (2)	0.0013 (16)	0.0148 (18)	0.0006 (15)
N1	0.0564 (18)	0.0368 (16)	0.0461 (16)	-0.0068 (14)	0.0245 (14)	-0.0097 (13)
01	0.083 (2)	0.071 (2)	0.0702 (18)	-0.0221 (17)	0.0428 (17)	-0.0113 (16)
O2	0.062 (2)	0.077 (2)	0.097 (2)	0.0182 (17)	0.0115 (18)	0.0012 (19)
C2	0.045 (2)	0.042 (2)	0.081 (3)	-0.0005 (17)	0.003 (2)	-0.0040 (19)
F2	0.078 (2)	0.0610 (19)	0.216 (4)	-0.0003 (15)	0.015 (2)	0.064 (2)
N2	0.0489 (18)	0.0391 (17)	0.0596 (19)	-0.0017 (14)	0.0191 (15)	-0.0098 (14)
N3	0.0440 (17)	0.0391 (17)	0.0594 (18)	-0.0089 (13)	0.0157 (15)	-0.0011 (14)
C3	0.060(2)	0.036 (2)	0.057 (2)	-0.0128 (18)	0.0075 (18)	-0.0031 (16)
F3	0.0552 (16)	0.085 (2)	0.107 (2)	-0.0209 (14)	-0.0060 (15)	0.0192 (16)
C4	0.064 (2)	0.0314 (17)	0.0366 (17)	0.0015 (16)	0.0283 (16)	-0.0008 (14)
N4	0.047 (2)	0.061 (3)	0.221 (6)	-0.007(2)	0.011 (3)	-0.023 (4)
C5	0.046 (2)	0.047 (2)	0.0308 (16)	0.0043 (16)	0.0127 (14)	0.0011 (14)
C6	0.056 (2)	0.0337 (18)	0.0290 (16)	-0.0064 (15)	0.0188 (15)	-0.0035 (12)
C7	0.046 (2)	0.0327 (18)	0.060(2)	0.0052 (16)	0.0041 (18)	-0.0031 (16)
C8	0.059 (2)	0.042 (2)	0.0453 (19)	-0.0057 (17)	0.0238 (18)	0.0005 (16)
C9	0.066 (3)	0.056 (3)	0.110 (4)	-0.002 (2)	0.021 (3)	-0.031 (3)
C10	0.059 (3)	0.040 (2)	0.089 (3)	-0.0079 (19)	0.017 (2)	0.023 (2)
O3	0.066 (2)	0.120 (4)	0.248 (7)	-0.023 (3)	0.044 (3)	-0.065 (4)

Geometric parameters (Å, °)

Cl—C3	1.729 (4)	N3—C7	1.368 (5)
F1—C5	1.329 (4)	N3—C8	1.397 (5)
C1—C6	1.368 (5)	N3—C10	1.401 (5)
C1—C2	1.379 (5)	C3—C4	1.370 (5)
C1—H1A	0.9300	F3—C10	1.336 (5)
N1—C8	1.359 (5)	C4—C5	1.369 (5)
N1—N2	1.397 (4)	C4—H4A	0.9300
N1—C6	1.408 (4)	N4—O3	1.373 (8)
O1—C8	1.196 (4)	C5—C6	1.387 (5)
O2—N4	1.176 (6)	С7—С9	1.475 (6)
C2—C3	1.389 (5)	С9—Н9А	0.9600
C2—N4	1.473 (6)	С9—Н9В	0.9600
F2	1.315 (5)	С9—Н9С	0.9600
N2—C7	1.294 (5)	C10—H10A	0.9800
C6—C1—C2	119.7 (3)	F1—C5—C6	118.7 (3)

C6—C1—H1A	120.1	C4—C5—C6	121.9 (3)
C2—C1—H1A	120.1	C1—C6—C5	118.6 (3)
C8—N1—N2	112.8 (3)	C1—C6—N1	119.8 (3)
C8—N1—C6	128.0 (3)	C5—C6—N1	121.3 (3)
N2—N1—C6	119.2 (3)	N2—C7—N3	111.9 (3)
C1—C2—C3	121.4 (4)	N2—C7—C9	123.3 (4)
C1—C2—N4	115.2 (4)	N3—C7—C9	124.7 (4)
C3—C2—N4	123.3 (4)	O1—C8—N1	128.7 (4)
C7—N2—N1	104.3 (3)	O1—C8—N3	128.7 (3)
C7—N3—C8	108.4 (3)	N1—C8—N3	102.6 (3)
C7—N3—C10	129.4 (3)	С7—С9—Н9А	109.5
C8—N3—C10	122.0 (3)	С7—С9—Н9В	109.5
C4—C3—C2	118.7 (3)	H9A—C9—H9B	109.5
C4—C3—Cl	117.7 (3)	С7—С9—Н9С	109.5
C2—C3—Cl	123.5 (3)	H9A—C9—H9C	109.5
C5—C4—C3	119.7 (3)	H9B—C9—H9C	109.5
C5—C4—H4A	120.2	F2-C10-F3	105.3 (4)
C3—C4—H4A	120.2	F2-C10-N3	110.4 (4)
O2—N4—O3	123.4 (5)	F3—C10—N3	110.4 (3)
O2—N4—C2	120.4 (5)	F2-C10-H10A	110.2
O3—N4—C2	113.7 (5)	F3—C10—H10A	110.2
F1—C5—C4	119.4 (3)	N3—C10—H10A	110.2
C6-C1-C2-C3	-2.3 (6)	C8—N1—C6—C1	-123.1 (4)
C6-C1-C2-N4	174.9 (4)	N2—N1—C6—C1	57.8 (4)
C8—N1—N2—C7	0.3 (4)	C8—N1—C6—C5	62.6 (5)
C6—N1—N2—C7	179.5 (3)	N2—N1—C6—C5	-116.5 (3)
C1—C2—C3—C4	1.0 (6)	N1—N2—C7—N3	-0.9 (4)
N4—C2—C3—C4	-176.0 (5)	N1—N2—C7—C9	-177.2 (4)
C1—C2—C3—C1	-179.7 (3)	C8—N3—C7—N2	1.2 (4)
N4-C2-C3-Cl			
C2—C3—C4—C5	3.4 (7)	C10—N3—C7—N2	176.2 (4)
	3.4 (7) 0.5 (6)	C10—N3—C7—N2 C8—N3—C7—C9	176.2 (4) 177.5 (4)
Cl—C3—C4—C5	3.4 (7) 0.5 (6) -178.9 (2)	C10—N3—C7—N2 C8—N3—C7—C9 C10—N3—C7—C9	176.2 (4) 177.5 (4) -7.5 (6)
Cl—C3—C4—C5 C1—C2—N4—O2	3.4 (7) 0.5 (6) -178.9 (2) 25.3 (8)	C10—N3—C7—N2 C8—N3—C7—C9 C10—N3—C7—C9 N2—N1—C8—O1	176.2 (4) 177.5 (4) -7.5 (6) -177.8 (4)
Cl—C3—C4—C5 C1—C2—N4—O2 C3—C2—N4—O2	3.4 (7) 0.5 (6) -178.9 (2) 25.3 (8) -157.6 (5)	C10—N3—C7—N2 C8—N3—C7—C9 C10—N3—C7—C9 N2—N1—C8—O1 C6—N1—C8—O1	176.2 (4) 177.5 (4) -7.5 (6) -177.8 (4) 3.1 (7)
Cl—C3—C4—C5 C1—C2—N4—O2 C3—C2—N4—O2 C1—C2—N4—O3	3.4 (7) 0.5 (6) -178.9 (2) 25.3 (8) -157.6 (5) -137.4 (5)	C10—N3—C7—N2 C8—N3—C7—C9 C10—N3—C7—C9 N2—N1—C8—O1 C6—N1—C8—O1 N2—N1—C8—N3	176.2 (4) 177.5 (4) -7.5 (6) -177.8 (4) 3.1 (7) 0.4 (4)
Cl—C3—C4—C5 C1—C2—N4—O2 C3—C2—N4—O2 C1—C2—N4—O3 C3—C2—N4—O3	3.4 (7) 0.5 (6) -178.9 (2) 25.3 (8) -157.6 (5) -137.4 (5) 39.7 (8)	C10—N3—C7—N2 C8—N3—C7—C9 C10—N3—C7—C9 N2—N1—C8—O1 C6—N1—C8—O1 N2—N1—C8—N3 C6—N1—C8—N3	176.2 (4) 177.5 (4) -7.5 (6) -177.8 (4) 3.1 (7) 0.4 (4) -178.7 (3)
Cl—C3—C4—C5 C1—C2—N4—O2 C3—C2—N4—O2 C1—C2—N4—O3 C3—C2—N4—O3 C3—C2—N4—O3	3.4 (7) 0.5 (6) -178.9 (2) 25.3 (8) -157.6 (5) -137.4 (5) 39.7 (8) 176.9 (3)	C10—N3—C7—N2 C8—N3—C7—C9 C10—N3—C7—C9 N2—N1—C8—O1 C6—N1—C8—O1 N2—N1—C8—N3 C6—N1—C8—N3 C7—N3—C8—O1	176.2 (4) 177.5 (4) -7.5 (6) -177.8 (4) 3.1 (7) 0.4 (4) -178.7 (3) 177.3 (4)
Cl—C3—C4—C5 C1—C2—N4—O2 C3—C2—N4—O2 C1—C2—N4—O3 C3—C2—N4—O3 C3—C4—C5—F1 C3—C4—C5—C6	3.4 (7) 0.5 (6) -178.9 (2) 25.3 (8) -157.6 (5) -137.4 (5) 39.7 (8) 176.9 (3) -0.6 (5)	C10—N3—C7—N2 C8—N3—C7—C9 C10—N3—C7—C9 N2—N1—C8—O1 C6—N1—C8—O1 N2—N1—C8—N3 C6—N1—C8—N3 C7—N3—C8—O1 C10—N3—C8—O1	176.2 (4) 177.5 (4) -7.5 (6) -177.8 (4) 3.1 (7) 0.4 (4) -178.7 (3) 177.3 (4) 1.9 (6)
Cl—C3—C4—C5 C1—C2—N4—O2 C3—C2—N4—O2 C1—C2—N4—O3 C3—C2—N4—O3 C3—C4—C5—F1 C3—C4—C5—C6 C2—C1—C6—C5	3.4 (7) 0.5 (6) -178.9 (2) 25.3 (8) -157.6 (5) -137.4 (5) 39.7 (8) 176.9 (3) -0.6 (5) 2.1 (5)	C10—N3—C7—N2 C8—N3—C7—C9 C10—N3—C7—C9 N2—N1—C8—O1 C6—N1—C8—O1 N2—N1—C8—N3 C6—N1—C8—N3 C7—N3—C8—O1 C10—N3—C8—O1 C7—N3—C8—N1	176.2 (4) 177.5 (4) -7.5 (6) -177.8 (4) 3.1 (7) 0.4 (4) -178.7 (3) 177.3 (4) 1.9 (6) -0.9 (4)
Cl—C3—C4—C5 C1—C2—N4—O2 C3—C2—N4—O2 C1—C2—N4—O3 C3—C2—N4—O3 C3—C4—C5—F1 C3—C4—C5—C6 C2—C1—C6—C5 C2—C1—C6—N1	3.4 (7) 0.5 (6) -178.9 (2) 25.3 (8) -157.6 (5) -137.4 (5) 39.7 (8) 176.9 (3) -0.6 (5) 2.1 (5) -172.3 (3)	C10—N3—C7—N2 C8—N3—C7—C9 C10—N3—C7—C9 N2—N1—C8—O1 C6—N1—C8—O1 N2—N1—C8—N3 C6—N1—C8—N3 C7—N3—C8—O1 C10—N3—C8—N1 C10—N3—C8—N1	176.2 (4) 177.5 (4) -7.5 (6) -177.8 (4) 3.1 (7) 0.4 (4) -178.7 (3) 177.3 (4) 1.9 (6) -0.9 (4) -176.3 (3)
Cl—C3—C4—C5 C1—C2—N4—O2 C3—C2—N4—O2 C1—C2—N4—O3 C3—C2—N4—O3 C3—C4—C5—F1 C3—C4—C5—C6 C2—C1—C6—C5 C2—C1—C6—N1 F1—C5—C6—C1	3.4 (7) 0.5 (6) -178.9 (2) 25.3 (8) -157.6 (5) -137.4 (5) 39.7 (8) 176.9 (3) -0.6 (5) 2.1 (5) -172.3 (3) -178.2 (3)	C10—N3—C7—N2 C8—N3—C7—C9 C10—N3—C7—C9 N2—N1—C8—O1 C6—N1—C8—O1 N2—N1—C8—N3 C6—N1—C8—N3 C7—N3—C8—O1 C10—N3—C8—O1 C7—N3—C8—N1 C10—N3—C8—N1 C7—N3—C10—F2	176.2 (4) 177.5 (4) -7.5 (6) -177.8 (4) 3.1 (7) 0.4 (4) -178.7 (3) 177.3 (4) 1.9 (6) -0.9 (4) -176.3 (3) -59.3 (6)
C1-C3-C4-C5 $C1-C2-N4-O2$ $C3-C2-N4-O3$ $C3-C2-N4-O3$ $C3-C4-C5-F1$ $C3-C4-C5-F1$ $C3-C4-C5-C6$ $C2-C1-C6-C5$ $C2-C1-C6-N1$ $F1-C5-C6-C1$ $C4-C5-C6-C1$	$\begin{array}{c} 3.4 \ (7) \\ 0.5 \ (6) \\ -178.9 \ (2) \\ 25.3 \ (8) \\ -157.6 \ (5) \\ -137.4 \ (5) \\ 39.7 \ (8) \\ 176.9 \ (3) \\ -0.6 \ (5) \\ 2.1 \ (5) \\ -172.3 \ (3) \\ -178.2 \ (3) \\ -0.7 \ (5) \end{array}$	C10—N3—C7—N2 C8—N3—C7—C9 C10—N3—C7—C9 N2—N1—C8—O1 C6—N1—C8—O1 N2—N1—C8—N3 C6—N1—C8—N3 C7—N3—C8—O1 C10—N3—C8—O1 C7—N3—C8—N1 C10—N3—C8—N1 C7—N3—C10—F2 C8—N3—C10—F2	176.2 (4) $177.5 (4)$ $-7.5 (6)$ $-177.8 (4)$ $3.1 (7)$ $0.4 (4)$ $-178.7 (3)$ $177.3 (4)$ $1.9 (6)$ $-0.9 (4)$ $-176.3 (3)$ $-59.3 (6)$ $115.1 (5)$
C1-C3-C4-C5 $C1-C2-N4-O2$ $C3-C2-N4-O3$ $C3-C2-N4-O3$ $C3-C4-C5-F1$ $C3-C4-C5-F1$ $C3-C4-C5-C6$ $C2-C1-C6-C5$ $C2-C1-C6-N1$ $F1-C5-C6-C1$ $C4-C5-C6-C1$ $F1-C5-C6-N1$	$\begin{array}{c} 3.4 \ (7) \\ 0.5 \ (6) \\ -178.9 \ (2) \\ 25.3 \ (8) \\ -157.6 \ (5) \\ -137.4 \ (5) \\ 39.7 \ (8) \\ 176.9 \ (3) \\ -0.6 \ (5) \\ 2.1 \ (5) \\ -172.3 \ (3) \\ -178.2 \ (3) \\ -0.7 \ (5) \\ -3.9 \ (4) \end{array}$	C10—N3—C7—N2 C8—N3—C7—C9 C10—N3—C7—C9 N2—N1—C8—O1 C6—N1—C8—O1 N2—N1—C8—N3 C6—N1—C8—N3 C7—N3—C8—O1 C10—N3—C8—O1 C7—N3—C8—N1 C10—N3—C8—N1 C7—N3—C8—N1 C7—N3—C10—F2 C8—N3—C10—F2 C7—N3—C10—F3	176.2 (4) $177.5 (4)$ $-7.5 (6)$ $-177.8 (4)$ $3.1 (7)$ $0.4 (4)$ $-178.7 (3)$ $177.3 (4)$ $1.9 (6)$ $-0.9 (4)$ $-176.3 (3)$ $-59.3 (6)$ $115.1 (5)$ $56.7 (5)$

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
C10—H10A…O1 ⁱ	0.98	2.32	3.190 (6)	148

Symmetry code: (i) -x+2, -y+1, -z.